

ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

Simplex Method: An Alternative Approach

K. G. Lokhande¹, N.W.Khobragade², P.G. Khot³

- 1. Department of Applied Mathematics, Priyadarshini College of Engineering, Digdoh Hills, Nagpur-440019, INDIA.
 - 2. Prof. Dept. of Mathematics, RTM Nagpur University, Nagpur
 - 3. Prof. Dept. of Statistics, RTM Nagpur University, Nagpur

Abstract- In this paper, an alternative approach to the Simplex method of solution of linear programming is suggested. The method sometimes involves less iteration than in the Simplex method or at the most equal number. This powerful technique is illustrated through the problems.

Key words: Basic feasible solution, optimum solution, conventional simplex method.

I. INTRODUCTION

The linear programming has its own importance in obtaining the solution of a problem.

To maximize Z = Cx

Subject to Ax=b

 $x \ge 0$

Where

 $x = n \times 1$ column vector

 $A = m \times n$ coefficient matrix

 $b = m \times 1$ column vector

C = 1x n row vector

and the columns of A are denoted by y_1, y_2, \dots, y_n There are four methods for solution of linear programming problem. These methods can be classified as:

- (i) The graphical method
- The systematic trial and error method (ii)
- The vector method (iii)
- Simplex method (iv)

The simplex method is the most general and powerful.

II. THE SIMPLEX ALGORITHM

For the solution of any L.P.P., by simplex algorithm, the existence of an initial basic feasible solution is always assumed. The steps for the computation of an optimum solution are as follows:

Step 1. Check whether the objective function of the given L.P.P. is to be maximized or minimized. If it is to be minimized then we convert it into a problem of maximizing it by using the result

Minimum z = - Maximum (-z)

Step 2. Check whether all bi (i=1,2....m) are nonnegative. If any one of bi is negative then multiply the corresponding in equation of the constraints by -1, so as to get all bi (i=1,2....m) non-negative.

Step 3. Convert all the in equations of the constraints into equations by introducing slack and/or surplus variables in the constraints. Put the costs of these variables equal to zero.

Step 4. Obtain an initial basic feasible solution to the problem in the form $x_B=B^{-1}b$ and put it in the first column of the simplex table.

Step 5. Compute the net evaluations z_i - c_i (j=1,2....n) by using the relation z_j - c_j = $c_B y_j$ - c_j where y_j = $B^{-1} a_j$. Examine the sign z_i - c_i

If all $(z_j-c_j) \ge 0$ then the initial basic feasible solution x_B is an optimum basic feasible solution

If at least one $(z_i-c_i) < 0$, proceed on to the next (ii)

Step 6. If there are more than one negative (z_i-c_i) , then choose the most negative of them. Let it be (z_r-c_r) for some j=r.

If all $y_{ir} \le 0$, (i=1,2....m), then there is an (i) unbounded solution to the given problem.

(ii) If at least one $y_{ir} > 0$, (i=1,2....m), then the corresponding vector y_r enters the basis y_B

Step7. ratios $\left\{ \frac{x_{Bi}}{y_{ir}}$, $y_{ir} > 0$, $i = 1, 2, \dots m \right\}$ and choose the minimum of them. Let the minimum of these ratios x_{Bk}

be \mathcal{Y}_{kr} . Then the vector y_k will leave the basis y_B . The common element \mathcal{Y}_{kr} , which is in the kth row and the rth column is known as the leading element (or pivotal element) of the table.

Step 8. Convert the leading element to unity by dividing its row by the leading element itself and all other elements in its column to zeroes by making use of the relations:

$$\widehat{y}_{ij} = y_{ij} - \frac{y_{kj}}{y_{kr}} y_{ir}$$

$$\widehat{y}_{kj} = \frac{y_{kj}}{y_{kr}}$$

$$j = 1,2,3,\dots,n$$

$$\widehat{y}_{kj} = 0$$

$$\widehat{y}_{kj} = 0$$

$$\widehat{y}_{kj} = 0$$

$$\widehat{y}_{kr} =$$

Step 9. Go to step 5 and repeat the computational procedure until either an optimum solution is obtained or there is an unbounded solution.

III. ALTERNATIVE METHOD

In alternative method of solution to LPP first four steps

Step 5. Compute the net evaluations z_i - c_i (j=1,2....n) by using the relation $z_j - c_j = c_B y_j - c_j$ where $y_j = B^{-1} a_j$. $\frac{zj - cj}{\sum_{i=1}^{n} y_i} \neq yij$

Also compute Σyj

(i) If all $(z_i-c_i) \ge 0$ then the initial basic feasible solution x_B is an optimum basic feasible solution

Step 6. If there are more than one negative (z_i-c_i) , then choose the entering vector corresponding to which

> is most negative. Let it be Σyj for some j=r. and rest of the procedure is same as that of Simplex method.

It is shown that if we choose the entering vector y_i such

that Σyj is most negative, then the iterations required are fewer in some problems. This has been illustrated by giving the solution of problems. We have also shown that either the iterations required are same or less but iterations required are never more than those of the simplex method.

PROBLEM 1:

Maximize $z = 12x_1 + 20x_2 + 18x_3 + 40x_4$ Subject to: $4x_1+9x_2+7x_3+10x_4 \le 6000$;

 $x_1+x_2+3x_3+40x_4 \le 4000$;

$x_1, x_2, x_3, x_4 \ge 0$

SOLUTION

Maximize $z = 12x_1 + 20x_2 + 18x_3 + 40x_4 + 0(x_5 + x_6)$ S.t. $4x_1+9x_2+7x_3+10x_4+x_5=6000$; $x_1 + x_2 + 3x_3 + 40x_4 + x_6 = 4000$

 $x_1, x_2, x_3, x_4, x_5, x_6 \ge 0$

First Iteration

			12	20	18	40	0	0	
C_{B}	y_{B}	X_{B}	\mathbf{y}_1	y_2	y_3	y_4	y ₅	у	θ
								6	
0	y ₅	6000	4	9	7	10	1	0	1500
0	y_6	4000	1	1	3	40	0	1	4000
		z _i -c _i	-12	-20	-18	-40	0	0	
		$\sum y_i$	5	10	10	50	1	1	
		zj – cj	-	-2	-	-	0	0	
		Σ¤yj	12/5		9/5	4/5			

 y_1 is entering into the basis and y_5 leaves the basis.

Second Iteration

			12	20	18	40	0	0	
C_{B}	y_B	XB	y_1	\mathbf{y}_2	\mathbf{y}_3	y_4	y ₅	у	θ
								6	
12	y_1	1500	1	9/4	7/4	5/2	1/4	0	600
0	y ₆	2500	1	-5/4	5/4	75/	-	1	200/
						2	1/4		3
		z _i -c _i	0	7	3	-10	3	0	

 y_4 is entering into the basis and y_6 leaves the basis.

Third Iteration

			12	20	18	40	0	0
C_{B}	y_{B}	XB	y_1	y_2	y ₃	y_4	y ₅	y ₆
12	y_1	4500/3	1	7/3	3/2	0	4/15	-1/15
40	У4	200/3	0	-1/30	1/3	1	1/150	2/75

, , ,	, =01							
					0			
		z _i -c _i	0	20/3	4/3	0	14/5	4/15

Since z_i - $c_i \ge 0$, an optimum solution has been reached. Solution is y1 = 4500/3, y4 = 200/3

PROBLEM 2:

Maximize $z = 2x_1 + x_2 + 3x_3$ Subject to $x_1+x_2+2x_3 \le 5$; $2x_1+3x_2+4x_3=12$;

 $x_1, x_2, x_3 \ge 0$

SOLUTION:

Maximize $z = 2x_1 + x_2 + 3x_3 + 0x_4 - Mx_5$ Subject to $x_1+x_2+2x_3+x_4=5$;

 $2x_1+3x_2+4x_3+x_5=12;$ $x_1, x_2, x_3, x_4, x_5 \ge 0$

First Iteration

THS	i itera	เนอม						
			2	1	3	0	-M	
c_{B}	y_B	XB	y ₁	y ₂	y ₃	y ₄	У5	
0	y_4	5	1	1	2	1	0	
-M	y ₅	4	2	3	4	0	1	Ī
		z _i -c _i	-2M-2	-3M-1	-4M-	0	0	
		, ,			3			
c_{B}	y_B	XB	y_1	y_2	y ₃	y ₄	y ₅	
0	y_4	5	1	1	2	1	0	
1	y ₅	4	2	3	4	0	1	1
								1
		z _i -c _i	-2M-2	-3M-1	-4M-	0	0	1
		, ,			3			l
								1

Third Iteration

			2	1	3	0	-M
c_{B}	y_B	x_B	y_1	y_2	y ₃	y_4	y ₅
2	\mathbf{y}_1	3	1	0	2	3	-1
1	\mathbf{y}_2	2	0	1	0	-2	1
		z _i -c _i	0	0	1	4	M-1

Since z_i - $c_i \ge 0$, an optimum solution has been reached. Optimum solution is $x_1 = 3$, $x_2 = 2$.

PROBLEM 3:

Maximize $z = 5x_1 + 2x_2$ Subject to $4x_1+2x_2 \le 16$;

 $3x_1+x_2 \le 9$; $3x_1-x_2 \le 9$; $x_1, x_2 \ge 0$

SOLUTION:

Maximize

 $z = 5x_1 + 2x_2 + 0(x_3 + x_4 + x_5)$ Subject to $4x_1+2x_2+x_3=16$;

 $3x_1-x_2+x_4=9;$ $3x_1-x_2+x_5=9;$

 $x_1, x_2 \ge 0$

First Iteration

			5	2	0	0	0
c_{B}	$y_{\rm B}$	X_{B}	y_1	y_2	y ₃	y ₄	y ₅
0	y ₃	16	4	2	1	0	0

ISO 9001:2008 Certified

International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

0	y_4	9	3	1	0	1	0
0	y_5	9	3	-1	0	0	1
		z _i -c _i	-5	-2	0	0	0
		$\frac{zj-cj}{\sum \Box yj}$	-1/2	-1			

 y_2 is entering into the basis and y_3 leaves the basis.

Second Iteration

			5	2	0	0	0
c_{B}	y_B	X_{B}	y_1	y_2	y ₃	y_4	y ₅
2	y_2	8	2	1	1/2	0	0
0	y ₄	1	1	0	-1/2	1	0
0	y ₅	17	5	0	1/2	0	1
		z _i -c _i	-1	0	1	0	0

Third Iteration

			5	2	0	0	0
c_{B}	y_B	X_{B}	y_1	\mathbf{y}_2	y ₃	y_4	y ₅
2	y_2	6	0	1	3/2	-2	0
5	y_1	1	1	0	-1/2	1	0
0	y ₃	12	0	0	1/2	-5	1
		z _i -c _i	0	0	1	0	0

Since z_j - $c_j \ge 0$, an optimum solution has been reached. Optimum solution is x_1 = 1, x_2 =6 and x_3 =12.

IV. CONCLUSION

It is observed that if we solve the above problems by the alternative method, the iterations required for optimum solution are less as compared to the simplex method. Also in third problem if we use simplex method we come across with a tie for outgoing vector and it requires six iterations to solve the problem whereas by alternative method the problem is solved at third iteration and tie doesn't arise.

REFERENCES

- [1] Beale, E.M.L., (1955): Cycling in the dual Simplex algorithm, Nav. Res. logist Q.2: 269-75.
- [2] Dantzig G.B., (1951). Maximization of linear function of variables subject to linear inequalities in 21ed.
- [3] Gass. S. I., (1964): Linear programming, McGraw-Hill Book Co. Inc., New York.
- [4] Koopman cowls commission monograph 13, John Wieley and Sons, Inc., New York.
- [5] Khobragade N.W. (2004): Alternative approach to the Simplex Method-I, Bulletin of pure and applied Sciences. Vol.23E (No.1); P.35-40.
- [6] Khobragade, N.W, Lamba, N.K and Khot, P. G (2012): Alternative Approach to Wolfe's Modified Simplex Method for Quadratic Programming Problems, Int. J. Latest Trends in Maths. Vol. 2, No. 1, pp. 19-24, U.K

- [7] Khobragade, N.W. and Khot, P. G (2005): Alternative Approach to the Simplex Method-II, Acta Ciencia Indica, vol. xxx I M, No.3, 651, India.
- [8] Khobragade, N.W, Lamba, N.K and Khot, P. G (2009): Alternative Approach to Revised Simplex Method, Int. J. of Pure and Appl. Maths. vol. 52, No.5, 693-699, Bulgaria.

AUTHOR BIOGRAPHY

Dr. N.W. Khobragade For being M.Sc in statistics and Maths he attained Ph.D. He has been teaching since 1986 for 27 years at PGTD of Maths, RTM Nagpur University, Nagpur and successfully handled different capacities. At present he is working as Professor. Achieved excellent experiences in Research for 15 years in the area of Boundary value problems and its application. Published

more than 180 research papers in reputed journals. Fourteen students awarded Ph.D Degree and four students submitted their thesis in University for award of Ph.D Degree under their guidance.